Search results for " Virtual Element Method"
showing 3 items of 3 documents
Virtual Element based formulations for computational materials micro-mechanics and homogenization
2021
In this thesis, a computational framework for microstructural modelling of transverse behaviour of heterogeneous materials is presented. The context of this research is part of the broad and active field of Computational Micromechanics, which has emerged as an effective tool both to understand the influence of complex microstructure on the macro-mechanical response of engineering materials and to tailor-design innovative materials for specific applications through a proper modification of their microstructure. While the classical continuum approximation does not account for microstructural details within the material, computational micromechanics allows detailed modelling of a heterogeneous…
Micro damage and cracking in fibre reinforced composites by a novel hybrid numerical technique
2020
Article number 0033974 AIP Incluida en Conference Proceedings 2309 The prediction of failure mechanisms in fibre-reinforced composite materials is of great importance for the design of composite engineering applications. With the aim of providing a tool able to predict and explain the initiation and propagation of damage in unidirectional fiber reinforced composites, in this contribution we develop a micromechanical numerical model based on a novel hybrid approach coupling the virtual element method (VEM) and the boundary element method (BEM). The BEM is a popular numerical technique, efficient and accurate, which has been successfully applied to interfacial fracture mechanics problems of f…
VIRTUAL ELEMENT METHOD FOR COMPUTATIONAL HOMOGENIZATIONS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE MATERIALS
2019
The Virtual Element Method (VEM) is a generalization of the Finite Element Method (FEM) for the treatment of general polygonal/polyhedral mesh elements. Despite its recent introduction, VEM has been applied to several problems in structural mechanics. Due to such capability of dealing with mesh elements of general shape and of naturally addressing the presence of hanging nodes, the VEM ensures a noticeable simplification in the data preparation stage of the analysis, allowing implementing a mesh generation process over complex multi-domain geometries in a fully automated way. Moreover, for the lowest order VEM used in this contribution,no numerical integration is required to compute the sys…